The CloudUPDRS Smartphone Software in Parkinson's study: Cross-validation against blinded human raters.

Ashwani Jha^{1*}, Elisa Menozzi^{1,2}, Rebecca Oyekan^{1,3}, Anna Latorre¹, Eoin Mulroy¹, Sebastian R Schreglmann¹, Cosmin Stamate⁴, Ioannis Daskalopoulos⁴, Stefan Kueppers⁴, Marco Luchini⁵, John C. Rothwell¹, George Roussos³, Kailash P. Bhatia^{1*}

¹Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK

²Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy

³Queen Square Movement Disorders Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK

⁴Birkbeck College, University of London, London, UK

⁵Benchmark Performance Ltd, Colchester, UK

Supplementary Material

Contents:

Supplementary Note 1: Relation between CloudUPDRS smartphone and MDS-UPDRS III items

Supplementary Note 2: Feature and Classifier selection

Supplementary Data 1: LOSO-CV Prediction analysis (any-rater criterion)

Supplementary Data 2: LOSO-CV Prediction analysis (median-rater criterion)

Supplementary Note 1: Relation between CloudUPDRS smartphone and MDS-UPDRS III items

The MDS-UPDRS III score is a 33 component scale (each component scored 0-4), distributed over 18 sections (labelled section 3.1, 3.2,... 3.18) designed to measure aspects of movement in a patient with PD. The CloudUPDRS smartphone application aims to measure a subset of 14 of these components (8 sections, 48% of total score) using 16 tests, which are outlined in Supplementary Table 1. Note that Finger tapping is assessed with two separate smartphone test items per hand. Gait is assessed by the smartphone application but because this was not included in our previously reported study⁶, we were unable to pre-specify a feature and so this has been excluded from the current study.

MDS-UPDRS III	Components	Smartphone	Phone Sensors Test		Example Features
Item		subtest	used	duration (s)	
3.4 Finger tapping	2	One target	screen pressure	60	Frequency, distance
		tapping	and touch events		
			and co-ordinates		
3.4 Finger tapping	2	Two target	screen pressure	60	Frequency, distance
		tapping	and touch events		
			and co-ordinates		
3.6 Pro/sup	2	Pronation/	acceleration in 3-	30	Amplitude, frequency
movements of		supination	or 6- axes		
hands		movements of			
		hands			
3.8 Leg agility	2	Leg agility	acceleration in 3-	30	Amplitude, frequency
			or 6- axes		
3.10 Gait	1	Gait	acceleration in 3-	90	Number of steps,
			or 6- axes		stride length, speed
3.11 Freezing of gait	1	Freezing	acceleration in 3-	90	Gait speed variation
		detection	or 6- axes		
		algorithm			
3.15 Postural tremor	2	Postural	acceleration in 3-	30	Tremor power (at
of hands		tremor	or 6- axes		dominant frequency)
3.16 Kinetic tremor	2	Kinetic tremor	acceleration in 3-	30	Tremor power
of hands			or 6- axes		(at dominant
					frequency)
3.17 Rest tremor	4	Rest tremor	acceleration in 3-	30	Tremor power (at
amplitude			or 6- axes		dominant frequency)

Supplementary Table 1: Correspondence between the clinician ascertained MDS-UPDRS III and the smartphone-based measures of motor severity. Each UPDRS section has 1-4 components, each scored from 0-4. For example, section 3.4 has 2 components because it is done individually in the left and right hand. Sections of part III of the motor UPDRS not included in the smartphone assessment are: 3.1 Speech, 3.2 Facial Expression, 3.3, Rigidity, 3.5 Hand movements, 3.7 Toe tapping, 3.9 arising from chair,

3.12 Postural instability, 3.13 Posture, 3.14 Global spontaneity of movement, 3.17 (rest tremor of jaw not ncluded), 3.18 constancy of rest tremor.					

Supplementary Note 2: Feature and Classifier selection

Post hoc selection of features and/or classifiers can induce feature selection bias and so we adopted a graded approach to address this. At the most conservative end, we used pre-specified features from our previously reported study⁶ and standard statistical classifiers (multinomial logistic regression). We performed two intermediate analyses: the best performing classifier with pre-specified features and the best performing feature with a standard classifier. At the most exploratory end we selected the best performing feature and classifier combination. Best performance was determined for each feature or classifier as maximum LOSO-CV accuracy for each subtest. We did not pursue further exploratory analyses such as looking at multi-variable feature predictions or feature interactions as these approaches can suffer from a higher degree of feature selection bias.

For the univariable feature search, we used all the features available on the PDkit website. Across all 16 subtests, this amounted to 456 available features (at the time of analysis). Full details of all available features, their original source references and accompanying software implementation can be viewed in the PDkit online documentation (https://pdkit.readthedocs.io/).

All features were normalised with a Box-Cox transformation, that transforms the data into a truncated normal distribution to facilitate statistical analysis.

All LOSO-CV classification was performed using the scikit-learn toolbox version 0.22 (https://scikit-learn.org). A brief description of the algorithms used is provided in Supplementary Table 2.

Classifier	Description				
Uniform	The prediction is randomly made from a uniform distribution over the categories available in				
	the sample. Used to calculate the random baseline.				
Multinomial	A logistic function is used to map the multiclass ordinal outcomes onto the feature. The				
Logistic	algorithm is solved using an optimisation procedure.				
Regression					
Nearest	k-nearest neighbours was used where k was specified as the maximum number of				
Neighbours	categories in the available class.				
Linear SVM	Linear Support Vector Machine using the one-against-one approach for multi-class				
	classification ²⁷ .				
RBF SVM	Radial Basis Function Support Vector Machine using the one-against-one approach for				
	multi-class classification ²⁷ .				
Gaussian Process	Gaussian process classification based on Laplace approximation based on Algorithm 3.1,				
	3.2, and 5.1 of Gaussian Processes for Machine Learning ²⁸ . The kernel specifying the				
	covariance function is set to RBF(1.0).				
Decision Tree	A standard decision tree classifier with maximum depth set to 5.				
Random Forest	A random forest meta estimator which employs several decision tree classifiers on sub-				
	samples of the dataset and uses averaging to improve the predictive accuracy and control				
	over-fitting. The number of trees of the forest is set to 10 and the maximum depth is set to 5				
	for each tree.				
Neural Net	A Multi-layer Perceptron classifier optimising the log-loss function using a RELU activation				
	function and the Adam solver for weight optimisation. The L2 penalty (regularisation term)				
	parameter is set to 1.0 and 1,000 epochs for the Adam stochastic solver.				
AdaBoost	A meta-estimator that first computes a classifier on the whole dataset and then proceeds to				
	create copies of the classifier so that the weights of incorrectly classified instances are				
	adjusted to favour more difficult cases. The implementation follows the Multi-class				
	AdaBoost ²⁹ by Zhu, Zou, Rosset and Hastie.				
Naive Bayes	An implementation of the Gaussian Naive Bayes algorithm for classification following Chan,				
	Golub, and LeVeque (Stanford CS tech report STAN-CS-79-773)				

Supplementary Table 2: Description of classifiers used.

Subtest	Prespecified	Best Classifier &	Prespecified Classifier	Best Classifier &	
	Classifier &	Prespecified	& Best Feature	Feature	
	Feature	Feature			
Left Hand Rest	Logistic Regression;	Decision Tree;	Logistic Regression;	RBF SVM; Magnitude	
Tremor	Amplitude by FFT	Amplitude by FFT	Magnitude Spkt Welch	Spkt Welch De	
			De		
Right Hand	Logistic Regression;	Neural Net;	Logistic Regression;	AdaBoost; Magnitude	
Rest Tremor	Amplitude by FFT	Amplitude by FFT	Amplitude by FFT	Autocorrelation_lag_8	
Left Leg Rest	Logistic Regression;	Nearest Neighbours;	Logistic Regression;	Nearest Neighbours;	
Tremor	Amplitude by FFT	Amplitude by FFT	Amplitude by FFT	Amplitude by FFT	
Right Leg Rest	Logistic Regression;	Linear SVM;	Logistic Regression;	Decision Tree;	
Tremor	Amplitude by FFT	Amplitude by FFT	Amplitude by FFT	Frequency by Welch	
Left Hand	Logistic Regression;	RBF SVM; Amplitude	Logistic Regression;	Decision Tree;	
Postural	Amplitude by FFT	by FFT	Amplitude by Welch	Amplitude by Welch	
Tremor					
Right Hand	Logistic Regression;	Linear SVM;	Logistic Regression;	Random Forest;	
Postural	Amplitude by FFT	Amplitude by FFT	Magnitude Change	Magnitude Agg Linear	
Tremor			Quant	Tr	
Left Hand	Logistic Regression;	Nearest Neighbours;	Logistic Regression;	Decision Tree;	
Kinetic Tremor	Amplitude by FFT	Amplitude by FFT	Magnitude Number	Frequency by Welch	
			Peaks		
Right Hand	Logistic Regression;	Linear SVM;	Logistic Regression;	Decision Tree;	
Kinetic Tremor	Amplitude by FFT	Amplitude by FFT	Frequency by Welch	Frequency by FFT	
Left Fingertap	Logistic Regression;	Linear SVM;	Logistic Regression	AdaBoost; Mean Alnt	
(1 target)	Frequency	Frequency	Incoordination Score	Target Distan	
Right	Logistic Regression;	Linear SVM;	Logistic Regression;	Naïve Bayes; Mean	
Fingertap	Frequency	Frequency	Mean Alnt Target Distan	Moving Time	
(1 target)					
Left Fingertap	Logistic Regression;	Linear SVM;	Logistic Regression;	AdaBoost; Mean	
(2 targets)	Frequency	Frequency	Mean Moving Time	Moving Time	
Right	Logistic Regression;	Linear SVM;	Logistic Regression;	Linear SVM;	
Fingertap	Frequency	Frequency	Mean Moving Time	Frequency	
(2 targets)					
Left Pronation/	Logistic Regression;	Logistic Regression;	Logistic Regression;	Logistic Regression;	
Supination	Amplitude by FFT	Amplitude by FFT	Amplitude by FFT	Amplitude by FFT	
Right	Logistic Regression;	RBF SVM; Amplitude	Logistic Regression;	RBF SVM; Magnitude	
Pronantion/	Amplitude by FFT	by FFT	Amplitude by Welch	Mean	
Supination					
Left Leg Agility	Logistic Regression;	Neural Net;	Logistic Regression;	AdaBoost; Magnitude	
	Amplitude by FFT	Amplitude by FFT	Magnitude Agg Linear Tr	Agg Linear Tr	
Right leg	Logistic Regression;	Neural Net;	Logistic Regression;	AdaBoost; Magnitude	
Agility	Amplitude by FFT	Amplitude by FFT	Magnitude Partial Auto	Partial Auto	

Supplementary Table 3: Features and classifiers used for each analysis. Features are italicised for convenience to separate them from classifiers which are not. Multinomial Logistic Regression has been abbreviated to Logistic Regression. For specifics of each feature, see https://pdkit.readthedocs.io/.

Supplementary Data 1: LOSO-CV Prediction analysis (any-rater criterion)

For the main analysis presented, we asked if the model predictions were similar to *any* other clinical rater. The any-rater criterion definition of a correct classification used is that for an individual prediction, the model was able to agree with any of the three individual clinical raters. Using this criterion, the following LOSO-CV accuracies were obtained (see also Figure 1 and Figure 2).

Subtest	Random	Prespecified	Prespecified	Best	Prespecified	Best
	Baseline	Classifier &	Classifier &	Classifier &	Classifier &	Classifier
		Feature	Feature	Prespecified	Best	& Feature
			categories	Feature	Feature	
			predicted			
Left Hand Rest	35.8	79.1	3/4	80.6	80.6	83.6
Tremor						
Right Hand Rest	34.9	82.5	3/4	87.3	82.5	88.9
Tremor						
Left Leg Rest	39.4	97.0	1/3	97.0	97.0	97.0
Tremor						
Right Leg Rest	65.7	97.0	1/2	97.0	97.0	100
Tremor						
Left Hand	25.4	46.0	3/4	68.3	66.7	76.2
Postural Tremor						
Right Hand	23.8	73.0	2/4	73.0	74.6	81.0
Postural Tremor						
Left Hand Kinetic	38.1	60.3	1/3	68.3	71.4	82.5
Tremor						
Right Hand	42.9	77.8	2/3	85.7	85.7	93.7
Kinetic Tremor						
Left Fingertap	43.5	53.2	3/5	54.8	54.8	61.3
(1 target)						
Right Fingertap	35.5	62.9	2/4	62.9	64.5	64.5
(1 target)						
Left Fingertap	29	54.8	3/5	54.8	58.1	61.3
(2 targets)						
Right Fingertap	35.5	59.7	3/4	62.9	62.9	62.9
(2 targets)						
Left Pronation/	33.3	74.6	2/5	74.6	74.6	74.6
Supination						
Right Pronation/	39.7	73.0	2/3	77.8	77.8	81.0
Supination						
Left Leg Agility	20.6	63.5	2/5	65.1	66.7	68.3
Right leg Agility	44.4	69.8	2/4	71.4	79.4	82.5

Overall Mean for	36.7 (4.3)	70.3 (5.9)	-	73.8 (5.3)	74.6 (5.1)	78.7 (5.1)
All Tests (SEM)						

Supplementary Table 4: LOSO-CV accuracies for the main analysis (any-rater criterion). The accuracy of a number of approaches are compared to a random baseline (similar to rolling a dice where subjects were randomly assigned to a clinical category). The fully prespecified analysis relied on prepublished features and a standard multinomial regression model. The Best Classifier & Prespecified Feature approach selected the best classifier from a range based on best performance but used only the pre-specified features. The Prespecified Classifier & Best Feature approach selected the best feature from a range but used only the pre-specified classifier. The Best Classifier and Feature approach selected the best combination of both. Accuracies are given for each subtest followed by the overall mean (and standard error, SEM). It is also possible for a simple classifier to achieve good performance at the expense of good calibration by predicting a single category consistently. Therefore, for the fully pre-specified analysis the number of categories predicted is shown over the total number of categories in the target sample (i.e. the median clinical score for each subject).

Supplementary Data 2: LOSO-CV Median Prediction analysis (median-rater criterion)

An alternative and more conservative definition of a correct classification is that for an individual prediction, the model was able to agree with the median of the three individual clinical raters (median-rater prediction). Note that a 100% classification accuracy here would mean that the classifier was *better* than any individual rater. Using this criterion, the following LOSO-CV accuracies were obtained which follow a similar pattern to the main analysis but are overall more conservative. Notably the fully prespecified analysis is often worse than the constant baseline on some subtests, but similar overall.

Subtest	Random	Prespecified	Prespecified	Best Classifier	Prespecified	Best
	Baseline	Classifier &	Classifier &	& Prespecified	Classifier &	Classifier &
		Feature	Feature	Feature	Best Feature	Feature
			categories			
			predicted			
Left Hand Rest	34.3	69.9	3/4	66.8	71.4	74.4
Tremor						
Right Hand Rest	33.3	75.9	3/4	80.6	75.9	82.2
Tremor						
Left Leg Rest	37.8	95.4	1/3	95.4	95.4	95.4
Tremor						
Right Leg Rest	62.6	95.5	1/2	95.5	95.5	98.5
Tremor						
Left Hand	18.7	31.0	3/4	58.3	51.7	71.2
Postural Tremor						
Right Hand	18.8	71.3	2/4	71.3	72.9	79.3
Postural Tremor						
Left Hand Kinetic	29.8	53.7	1/3	63.3	58.1	72.5
Tremor						
Right Hand	21.2	52.8	2/3	59.0	59.0	68.7
Kinetic Tremor						
Left Fingertap	24.9	34.6	3/5	37.9	37.9	37.6
(1 target)						
Right Fingertap	30.4	47.6	2/4	49.3	51.0	49.3
(1 target)						
Left Fingertap	17.2	37.9	3/5	37.9	41.1	44.3
(2 targets)						
Right Fingertap	28.7	44.4	3/4	49.3	49.3	49.3
(2 targets)						
Left Pronation/	21.7	41.3	2/5	41.3	41.3	41.3
Supination						
Right Pronation/	26.3	56.3	2/3	61.1	57.8	66
Supination						

Left Leg Agility	15.6	55.2	2/5	56.7	55	56.6
Right leg Agility	34.4	49.8	2/4	51.4	54.4	57.5
Overall Mean for	28.5 (4.7)	57.0 (8.0)	-	60.9 (7.3)	60.5 (7.1)	65.2 (7.5)
All Tests (SEM)						

Supplementary Table 5: LOSO-CV accuracies for the alternative median prediction analysis. The accuracy of a number of approaches are compared to a random baseline (similar to rolling a dice where subjects were randomly assigned to a clinical category). The fully prespecified analysis relied on prepublished features and a standard multinomial regression model. The Best Classifier & Prespecified Feature approach selected the best classifier from a range based on best performance but used only the pre-specified features. The Prespecified Classifier & Best Feature approach selected the best feature from a range but used only the pre-specified classifier. The Best Classifier and Feature approach selected the best combination of both. Accuracies are given for each subtest followed by the overall mean (and standard error, SEM). It is also possible for a simple classifier to achieve good performance at the expense of good calibration by predicting a single category consistently. Therefore, for the fully pre-specified analysis the number of categories predicted is shown over the total number of categories in the target sample (i.e. the median clinical score for each subject).